R/engine_hybrid.R
fuzzycoco_fit_df_hybrid.Rd
lowest-level implementation of the fitting of a fuzzy coco model using the hybrid engine
fuzzycoco_fit_df_hybrid(
model,
x,
y,
until = stop_engine_on_first_of(max_generations =
model$params$global_params$max_generations, max_fitness =
model$params$global_params$max_fitness),
verbose = model$verbose,
progress = TRUE
)
a Fuzzy Coco model as a fuzzy_coco
object
the input variables data (usually to fit) as a dataframe
the output variables data (usually to fit) as a dataframe
function that takes an engine
and returns TRUE if and only if the evolution must stop.
It is a way for the user to customize the stop conditions of the algorithm.
whether to be verbose
whether to display the computation progress (using progressr, if available)
a named list as a fuzzy_coco
fit object
x <- mtcars[c("mpg", "hp", "wt")]
y <- mtcars["qsec"]
pms <- params(
nb_rules = 2, nb_max_var_per_rule = 3, rules.pop_size = 20, mfs.pop_size = 20,
ivars.nb_sets = 3, ivars.nb_bits_vars = 3, ivars.nb_bits_sets = 2, ivars.nb_bits_pos = 8,
ovars.nb_sets = 3, ovars.nb_bits_vars = 1, ovars.nb_bits_sets = 2, ovars.nb_bits_pos = 8,
metricsw.sensitivity = 0, metricsw.specificity = 0, metricsw.rmse = 1,
output_vars_defuzz_thresholds = 17
)
model <- fuzzycoco("regression", pms)
fit <- fuzzycoco_fit_df_hybrid(model, x, y)
#> Loading required namespace: progressr